题目内容
【题目】如图①,在等腰梯形中,分别为的中点 为中点,现将四边形沿折起,使平面平面,得到如图②所示的多面体,在图②中.
(1)证明:;
(2)求三棱锥的体积.
【答案】(Ⅰ)见解析(Ⅱ)
【解析】
(Ⅰ)由已知可得EF⊥AB,EF⊥CD,折叠后,EF⊥DF,EF⊥CF,利用线面垂直的判定得EF⊥平面DCF,从而得到EF⊥MC;(Ⅱ)由已知可得,AE=BE=1,DF=CF=2,又DM=1,得到MF=1=AE,然后证明AM⊥DF,进一步得到BE⊥平面AEFD,再由等积法求三棱锥M﹣ABD的体积.
(Ⅰ)由题意,可知在等腰梯形中,,
∵,分别为,的中点,
∴,.
∴折叠后,,.
∵,∴平面.
又平面,∴.
(Ⅱ)易知,.
∵,∴.
又,∴四边形为平行四边形.
∴,故.
∵平面平面,平面平面,且,
∴平面.
∴
.
即三棱锥的体积为.
练习册系列答案
相关题目
【题目】《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行道时,应当减速慢行;遇行人正在通过人行道,应当停车让行,俗称“礼让斑马线”, 《中华人民共和国道路交通安全法》第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员“礼让斑马线”行为统计数据:
月份 | 1 | 2 | 3 | 4 | 5 |
违章驾驶员人数 | 120 | 105 | 100 | 90 | 85 |
(1)请利用所给数据求违章人数与月份之间的回归直线方程;
(2)预测该路口9月份的不“礼让斑马线”违章驾驶员人数.
参考公式: , .
参考数据: .