题目内容

【题目】已知等差数列{an}的前n项和为Sn , 若Sm﹣1=﹣4,Sm=0,Sm+2=14(m≥2,且m∈N*).
(1)求m的值;
(2)若数列{bn}满足 =logabn(n∈N*),求数列{(an+6)bn}的前n项和.

【答案】
(1)解:∵Sm﹣1=﹣4,Sm=0,Sm+2=14,

∴am=Sm﹣Sm﹣1=4,am+1+am+2=Sm+2﹣Sm=14.

设{an}的公差为d,则2am+3d=14,∴d=2.

∵Sm= =0,∴a1=﹣am=﹣4.

∴am=a1+(m﹣1)d=﹣4+2(m﹣1)=4,

∴m=5


(2)解:由(1)可得an=﹣4+2(n﹣1)=2n﹣6.

=logabn,即n﹣3=logabn

∴bn=an﹣3

∴(an+6)bn=2nan﹣3

设数列{(an+6)bn}的前n项和为Tn

则Tn=2a﹣2+4a﹣1+6a0+8a+…+2nan﹣3,①

∴aTn=2a﹣1+4a0+6a+8a2+…+2nan﹣2,②

①﹣②得:

(1﹣a)Tn=2a﹣2+2a﹣1+2a0+2a+…+2an﹣3﹣2nan﹣2

= ﹣2nan﹣2

=

∴Tn=


【解析】(1)计算am , am+1+am+2 , 利用等差数列的性质计算公差d,再代入求和公式计算m;(2)求出an , bn , 得出数列{(an+6)bn}的通项公式,利用错位相减法计算.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网