题目内容
【题目】曲线C:ρ2﹣2ρcosθ﹣8=0 曲线E: (t是参数)
(1)求曲线C的普通方程,并指出它是什么曲线.
(2)当k变化时指出曲线K是什么曲线以及它恒过的定点并求曲线E截曲线C所得弦长的最小值.
【答案】
(1)解:∵曲线C:ρ2﹣2ρcosθ﹣8=0,
∴x+y﹣2x﹣8=0,
∴(x﹣1)2+y2=9,
表示圆心(1,0)半径为3的圆
(2)解:曲线E: 消去参数得y﹣1=k(x﹣2)m是一条恒过定点(2,1)的直线(但不包括x=2),当直线E与圆心连线垂直时弦长最小,
设圆心到直线E的距离为d,则d= ,所以弦长的最小值=2 =2
【解析】(1)利用极坐标与直角坐标的转化方法,求曲线C的普通方程,即可指出它是什么曲线.(2)当直线E与圆心连线垂直时弦长最小,利用勾股定理可得结论.
练习册系列答案
相关题目
【题目】某市调研考试后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为.
优秀 | 非优秀 | 合计 | |
甲班 | 10 | ||
乙班 | 30 | ||
合计 | 110 |
(1)请完成上面的列联表;
(2)根据列联表的数据,若按99%的可靠性要求,能否认为“成绩与班级有关系”;
(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到9号或10号的概率.
参考公式及数据:,.