题目内容

【题目】已知函数f(x)=ln(1+x)﹣ln(1﹣x),给出以下四个命题: ①x∈(﹣1,1),有f(﹣x)=﹣f(x);
x1 , x2∈(﹣1,1)且x1≠x2 , 有
x1 , x2∈(0,1),有
x∈(﹣1,1),|f(x)|≥2|x|.
其中所有真命题的序号是(
A.①②
B.③④
C.①②③
D.①②③④

【答案】D
【解析】解:对于①,∵f(x)=ln(1+x)﹣ln(1﹣x),且其定义域为(﹣1,1), ∴f(﹣x)=ln(1﹣x)﹣ln(1+x)=﹣[ln(1+x)﹣ln(1﹣x)]=﹣f(x),
即①x∈(﹣1,1),有f(﹣x)=﹣f(x),故①是真命题;
对于②,∵x∈(﹣1,1),由
可知f(x)在区间(﹣1,1)上单调递增,
x1 , x2∈(﹣1,1)且x1≠x2 , 有 ,故②是真命题;
对于③,∵f′(x)= 在(0,1)单调递增,∴x1 , x2∈(0,1),
,故③是真命题;
对于④,设g(x)=f(x)﹣2x,则当x∈(0,1)时,g'(x)=f'(x)﹣2≥0,所以g(x)在(0,1)单调递增,所以当x∈(0,1)时,g(x)>g(0),即f(x)>2x;由奇函数性质可知,x∈(﹣1,1),|f(x)|≥2|x|,故④是真命题.
故选:D.
【考点精析】解答此题的关键在于理解命题的真假判断与应用的相关知识,掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网