题目内容
【题目】已知函数f(x)=ln(1+x)﹣ln(1﹣x),给出以下四个命题: ①x∈(﹣1,1),有f(﹣x)=﹣f(x);
②x1 , x2∈(﹣1,1)且x1≠x2 , 有 ;
③x1 , x2∈(0,1),有 ;
④x∈(﹣1,1),|f(x)|≥2|x|.
其中所有真命题的序号是( )
A.①②
B.③④
C.①②③
D.①②③④
【答案】D
【解析】解:对于①,∵f(x)=ln(1+x)﹣ln(1﹣x),且其定义域为(﹣1,1), ∴f(﹣x)=ln(1﹣x)﹣ln(1+x)=﹣[ln(1+x)﹣ln(1﹣x)]=﹣f(x),
即①x∈(﹣1,1),有f(﹣x)=﹣f(x),故①是真命题;
对于②,∵x∈(﹣1,1),由 ,
可知f(x)在区间(﹣1,1)上单调递增,
即x1 , x2∈(﹣1,1)且x1≠x2 , 有 ,故②是真命题;
对于③,∵f′(x)= 在(0,1)单调递增,∴x1 , x2∈(0,1),
有 ,故③是真命题;
对于④,设g(x)=f(x)﹣2x,则当x∈(0,1)时,g'(x)=f'(x)﹣2≥0,所以g(x)在(0,1)单调递增,所以当x∈(0,1)时,g(x)>g(0),即f(x)>2x;由奇函数性质可知,x∈(﹣1,1),|f(x)|≥2|x|,故④是真命题.
故选:D.
【考点精析】解答此题的关键在于理解命题的真假判断与应用的相关知识,掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.
【题目】某市调研考试后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为.
优秀 | 非优秀 | 合计 | |
甲班 | 10 | ||
乙班 | 30 | ||
合计 | 110 |
(1)请完成上面的列联表;
(2)根据列联表的数据,若按99%的可靠性要求,能否认为“成绩与班级有关系”;
(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到9号或10号的概率.
参考公式及数据:,.