题目内容

【题目】已知函数f(x)的图象与函数h(x)x2的图象关于点A(0,1)对称.

(1)求函数f(x)的解析式;

(2)g(x)f(x)g(x)在区间(0,2]上的值不小于6,求实数a的取值范围.

【答案】1f(x)x

2[7,+∞)

【解析】

解:(1)f(x)图象上任一点坐标为(xy)(xy)关于点A(0,1)的对称点(x,2y)h(x)的图象上,

∴2y=-x2∴yx,即f(x)x.

(2)由题意g(x)x,且g(x)x≥6x∈(0,2]

∵x∈(0,2]∴a1≥x(6x)

a≥x26x1.q(x)=-x26x1x∈(0,2]

q(x)=-x26x1=-(x3)28∴x∈(0,2]时,

q(x)maxq(2)7

a的取值范围为[7,+∞)

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网