题目内容
【题目】底面为菱形的直四棱柱,被一平面截取后得到如图所示的几何体.若,.
(1)求证:;
(2)求二面角的正弦值.
【答案】(1)见解析;(2)
【解析】
(1)先由线面垂直的判定定理证明平面,再证明线线垂直即可;
(2)建立空间直角坐标系,求平面的一个法向量与平面的一个法向量,再利用向量数量积运算即可.
(1)证明:连接,由平行且相等,可知四边形为平行四边形,所以.
由题意易知,,所以,,
因为,所以平面,
又平面,所以.
(2)设,,由已知可得:平面平面,
所以,同理可得:,所以四边形为平行四边形,
所以为的中点,为的中点,所以平行且相等,从而平面,
又,所以,,两两垂直,如图,建立空间直角坐标系,
,,由平面几何知识,得.
则,,,,
所以,,.
设平面的法向量为,由,可得,
令,则,,所以.同理,平面的一个法向量为.
设平面与平面所成角为,
则,所以.
练习册系列答案
相关题目