题目内容
【题目】如图,在四棱锥中,平面平面,,点分别为的中点.
(1)求证:平面平面EFD;
(2)求点到平面的距离.
【答案】(1)详见解析(2)
【解析】
(1)根据面面平行的判定定理,在面EFD内找两条相交直线平行于平面,即可证出;(2)根据等积法,,先求出三角形DEF的面积,再求出,即可求出点到平面的距离。
(1)由题意知:点是的中点,且,
所以,所以四边形是平行四边形,则.
平面,平面,所以平面.
又因为分别为的中点,所以.
平面,平面,
所以平面.
,所以平面平面.
(2)中,,,,
所以,所以
因为平面平面,
平面平面
所以平面.
连,取的中点,连,易知,
平面且.
设点P到平面EFD的距离为d.
在Rt△中,
在Rt△中,
在Rt△中,
在Rt△中,
在△中,,
即,
解得,
所以
所以.
因为平面平面,
平面平面,平面,,所以,平面所以,的长即是点到平面的距离.
在Rt△中,,
所以,,
所以.
所以,
即,
即,解得.
所以,点到平面的距离为.
练习册系列答案
相关题目