题目内容
【题目】已知动点到直线的距离比到定点的距离大1.
(1)求动点的轨迹的方程.
(2)若为直线上一动点,过点作曲线的两条切线,,切点为,,为的中点.
①求证:轴;
②直线是否恒过一定点?若是,求出这个定点的坐标;若不是,请说明理由.
【答案】(1);(2)①证明见解析;②.
【解析】
(1)由题意知,动点到直线的距离等于到定点的距离,符合抛物线的定义,求轨迹的方程为;
(2)①设动点,,,利用导数求出切线的方程分别为:、,从而有,为方程的两根,证明点的横坐标与点的横坐标相等,从而证得轴;
②由①中的结论,把直线的方程写成含有参数的形式,即
并把方程看成关于的一次函数,从而得到定点为。
(1)由动点到直线的距离比到定点的距离大1得,
动点到直线的距离等于到定点的距离,
所以点的轨迹为顶点在原点、开口向上的抛物线,其中,
轨迹方程为.
(2)①设切点,,,所以切线的斜率为,
切线.
设,则有,化简得.
同理可得.
所以,为方程的两根.
则有,,所以.
因此轴.
② 因为,
所以.又因为,
所以直线,即.
即直线过定点.
练习册系列答案
相关题目