题目内容
甲乙两人进行乒乓球比赛,各局相互独立,约定每局胜者得1分,负者得0分,如果两人比赛五局,乙得1分与得2分的概率恰好相等.
求乙在每局中获胜的概率为多少?
假设比赛进行到有一人比对方多2分或打满6局时停止,用表示比赛停止时已打局数,求的期望.
解析
练习册系列答案
相关题目
某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A、B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如下.记成绩不低于90分者为“成绩优秀”.
甲 | | 乙 |
6 | 9 | 3 6 7 9 9 |
9 5 1 0 | 8 | 0 1 5 6 |
9 9 4 4 2 | 7 | 3 4 5 8 8 8 |
8 8 5 1 1 0 | 6 | 0 7 7 |
4 3 3 2 | 5 | 2 5 |
(1)在乙班样本中的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的两个均“成绩优秀”的概率;
(2)由以上统计数据填写下面列联表,并判断是否有90%的把握认为:“成绩优秀”与教学方式有关.
| 甲班(A方式) | 乙班(B方式) | 总计 |
成绩优秀 | | | |
成绩不优秀 | | | |
总计 | | | |
附:,其中n=a+b+c+d.)
P(K2≥k) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 |
k | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
为加快新能源汽车产业发展,推进节能减排,国家对消费者购买新能源汽车给予补贴,其中对纯电动乘用车补贴标准如下表:
新能源汽车补贴标准 | |||
车辆类型 | 续驶里程(公里) | ||
纯电动乘用车 | 万元/辆 | 万元/辆 | 万元/辆 |
分组 | 频数 | 频率 |
合计 |
(1)求,,,的值;
(2)若从这辆纯电动乘用车中任选辆,求选到的辆车续驶里程都不低于公里的概率;
(3)若以频率作为概率,设为购买一辆纯电动乘用车获得的补贴,求的分布列和数学期望.