题目内容
【题目】函数的一段图象过点(0,1),如图所示.
(1)求函数的表达式;
(2)将函数的图象向右平移个单位,得函数的图象,求的最大值,并求出此时自变量x的集合;
(3)若,求的值.
【答案】(1) ;(2)2,;(3)0.
【解析】
(1)通过三个连续零点的值可以求出函数的周期,根据最小正周期公式可以求出的值,
根据图象平移的特点可以求出的值,再把点(0,1)的坐标代入解析式中,可以求出A的值;
(2)根据正弦型函数的图象变换特点可以求出的解析式,结合正弦型函数的性质最后求出的最大值,并求出此时自变量x的集合;
(3)根据可求出的表达式,最后可以计算出的值.
(1)由图知,T=π,于是ω==2.将y=Asin2x的图象向左平移,
得y=Asin(2x+φ)的图象,于是φ=2·=.将(0,1)代入y=Asin(2x+),得A=2.
故.
(2)依题意,f2(x)=2sin[2(x-)+]=-2cos(2x+),
当2x+=2kπ+π,即x=kπ+ (k∈Z)时,ymax=2.
x的取值集合为.
(3)因为,所以.
【题目】某公司计划购买1台机器,该种机器使用三年后即被淘汰.在购进机器时,可以一次性额外购买几次维修服务,每次维修服务费用200元,另外实际维修一次还需向维修人员支付小费,小费每次50元.在机器使用期间,如果维修次数超过购机时购买的维修服务次数,则每维修一次需支付维修服务费用500元,无需支付小费.现需决策在购买机器时应同时一次性购买几次维修服务,为此搜集并整理了100台这种机器在三年使用期内的维修次数,得下面统计表:
维修次数 | 8 | 9 | 10 | 11 | 12 |
频数 | 10 | 20 | 30 | 30 | 10 |
以这100台机器维修次数的频率代替1台机器维修次数发生的概率, 记表示1台机器三年内共需维修的次数,表示购买1台机器的同时购买的维修次数.
(1)求的分布列;
(2)若要求,确定的最小值;
(3)以在维修上所需费用的期望值为决策依据,在与之中选其一,应选用哪个?