题目内容
【题目】已知下列命题其中正确的有( )
A.“实数都大于0”的否定是“实数都小于或等于0”
B.“三角形外角和为360度”是含有全称量词的真命题
C.“至少存在一个实数,使得”是含有存在量词的真命题
D.“能被3整除的整数,其各位数字之和也能被3整除”是全称量词命题
【答案】BCD
【解析】
根据命题的否定可判断A,根据全称量词的概念及命题真假判断,可知B;根据存在量词的概念及命题真假判断可知C;根据全称量词的概念可判断D.
对于A, “实数都大于0”的否定是“实数不都大于0”,故A错误.
对于B, “三角形外角和为360度”含有全称量词,且为真命题,所以B正确;
对于C, “至少存在一个实数,使得”含有存在量词,且为真命题,所以C正确;
对于D, “能被3整除的整数,其各位数字之和也能被3整除”是全称量词命题,所以D正确.
综上可知,正确命题为BCD
故答案为: BCD
【题目】基于移动网络技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,给人们带来新的出行体验,某共享单车运营公司的市场研究人员为了了解公司的经营状况,对公司最近6个月的市场占有率进行了统计,结果如下表:
月份 | 2018.11 | 2018.12 | 2019.01 | 2019.02 | 2019.03 | 2019.04 |
月份代码 | 1 | 2 | 3 | 4 | 5 | 6 |
11 | 13 | 16 | 15 | 20 | 21 |
(1)请用相关系数说明能否用线性回归模型拟合与月份代码之间的关系.如果能,请计算出关于的线性回归方程,如果不能,请说明理由;
(2)根据调研数据,公司决定再采购一批单车扩大市场,从成本1000元/辆的型车和800元/辆的型车中选购一种,两款单车使用寿命频数如下表:
车型 报废年限 | 1年 | 2年 | 3年 | 4年 | 总计 |
10 | 30 | 40 | 20 | 100 | |
15 | 40 | 35 | 10 | 100 |
经测算,平均每辆单车每年能为公司带来500元的收入,不考虑除采购成本以外的其它成本,假设每辆单车的使用寿命都是整数年,用频率估计每辆车使用寿命的概率,以平均每辆单车所产生的利润的估计值为决策依据,如果你是公司负责人,会选择哪款车型?
参考数据:,,,.
参考公式:相关系数,,.