题目内容
16.如图,直四棱柱ABCD-A1B1C1D1中,AD1⊥A1C,且AA1=AD=DC=2,AB=BC.(1)求证:CD⊥AD;
(2)当DM为何值时(M是BD上的点),D1M⊥面A1C1D.
分析 (1)由已知可证AD1⊥平面A1DC,从而可证AD1⊥DC,又CD⊥D1D,可证CD⊥平面D1DA1,从而可证CD⊥AD.
(2)以D1 为原点,以$\overrightarrow{{D}_{1}{C}_{1}}$,$\overrightarrow{{D}_{1}{A}_{1}}$,$\overrightarrow{{D}_{1}D}$的方向分别为x,y,z轴的正方向,建立如图所示空间直角坐标系,设AC∩BD=Q,则由题意可得:$\overrightarrow{{A}_{1}D}$=(0,-2,2),$\overrightarrow{{A}_{1}{C}_{1}}$=(2,-2,0),$\overrightarrow{DQ}$=(1,1,0),可设$\overrightarrow{DM}$=$λ\overrightarrow{DQ}$=(λ,λ,0),则M(λ,λ,2),可求$\overrightarrow{{D}_{1}M}$(λ,λ,2),要使D1M⊥面A1C1D,只要$\left\{\begin{array}{l}{\overrightarrow{{D}_{1}M}•\overrightarrow{{A}_{1}D}=0}\\{\overrightarrow{{D}_{1}M}•\overrightarrow{{A}_{1}{C}_{1}}=0}\end{array}\right.$,解得λ的值,即可得解.
解答 证明:(1)∵直四棱柱ABCD-A1B1C1D1中,AA1=AD,
∴AD1⊥A1D,
又∵AD1⊥A1C,A1D∩A1C=A1,
∴AD1⊥平面A1DC,
∵DC?平面A1DC,
∴AD1⊥DC,
又∵CD⊥D1D,D1D∩AD1=D1
∴CD⊥平面D1DA1,AD?D1DA1,
∴CD⊥AD.
(2)以D1 为原点,以$\overrightarrow{{D}_{1}{C}_{1}}$,$\overrightarrow{{D}_{1}{A}_{1}}$,$\overrightarrow{{D}_{1}D}$的方向分别为x,y,z轴的正方向,建立如图所示空间直角坐标系,设AC∩BD=Q,则由题意可得:D1 (0,0,0),D(0.0.2),A1 (0,2,0,),C1 (2,0,0,),Q(1,1,2),
∴$\overrightarrow{{A}_{1}D}$=(0,-2,2),$\overrightarrow{{A}_{1}{C}_{1}}$=(2,-2,0),$\overrightarrow{DQ}$=(1,1,0),
可设$\overrightarrow{DM}$=$λ\overrightarrow{DQ}$=(λ,λ,0),则M(λ,λ,2),可求$\overrightarrow{{D}_{1}M}$(λ,λ,2),
∴要使D1M⊥面A1C1D,只要$\left\{\begin{array}{l}{\overrightarrow{{D}_{1}M}•\overrightarrow{{A}_{1}D}=0}\\{\overrightarrow{{D}_{1}M}•\overrightarrow{{A}_{1}{C}_{1}}=0}\end{array}\right.$,
∴$\left\{\begin{array}{l}{-2λ+4=0}\\{2λ-2λ=0}\end{array}\right.$,解得λ=2,$\overrightarrow{DM}$=(2,2,0),
∴当DM为2$\sqrt{2}$时,(M是BD上的点),D1M⊥面A1C1D.
点评 本题主要考查了直线与平面垂直的判定,空间中直线与直线之间的位置关系,考查了空间想象能力和推来论证能力,属于基本知识的考查.
A. | 假设至多有一个内角大于或等于60° | |
B. | 假设至多有两个内角大于或等于60° | |
C. | 假设没有一内角大于或等于60° | |
D. | 假设没有一个内角或至少有两个内角大于或等于60° |
A. | 0.60 | B. | 0.63 | C. | 0.65 | D. | 0.68 |
A. | y=log2(x+2) | B. | y=2x-1 | C. | y=x2-$\frac{1}{2}$ | D. | y=-x2 |
A. | $\frac{150}{7}$min | B. | $\frac{15}{7}$h | C. | 21.5 min | D. | 2.15 h |