题目内容

【题目】已知菱形ABCD的边长为2,∠BAD=120°,点E、F分别在边BC、DC上, ,若 =1, =﹣ ,则λ+μ=( )
A.
B.
C.
D.

【答案】C
【解析】解:由题意可得若 =( + )( + )= + + +
=2×2×cos120°+ μ =﹣2+4μ+4λ+λμ×2×2×cos120°
=4λ+4μ﹣2λμ﹣2=1,
∴4λ+4μ﹣2λμ=3 ①.
=﹣ (﹣ )= =(1﹣λ) (1﹣μ) =(1﹣λ) (1﹣μ)
=(1﹣λ)(1﹣μ)×2×2×cos120°=(1﹣λ﹣μ+λμ)(﹣2)=﹣
即﹣λ﹣μ+λμ=﹣ ②.
由①②求得λ+μ=
故答案为:

利用两个向量的加减法的法则,以及其几何意义,两个向量的数量积的定义由 =1,求得4λ+4μ﹣2λμ=3 ①;再由 =﹣ ,求得﹣λ﹣μ+λμ=﹣ ②.结合①②求得λ+μ的值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网