题目内容
【题目】已知菱形ABCD的边长为2,∠BAD=120°,点E、F分别在边BC、DC上, =λ , =μ ,若 =1, =﹣ ,则λ+μ=( )
A.
B.
C.
D.
【答案】C
【解析】解:由题意可得若 =( + )( + )= + + +
=2×2×cos120°+ +λ +λ μ =﹣2+4μ+4λ+λμ×2×2×cos120°
=4λ+4μ﹣2λμ﹣2=1,
∴4λ+4μ﹣2λμ=3 ①.
=﹣ (﹣ )= =(1﹣λ) (1﹣μ) =(1﹣λ) (1﹣μ)
=(1﹣λ)(1﹣μ)×2×2×cos120°=(1﹣λ﹣μ+λμ)(﹣2)=﹣ ,
即﹣λ﹣μ+λμ=﹣ ②.
由①②求得λ+μ= ,
故答案为: .
利用两个向量的加减法的法则,以及其几何意义,两个向量的数量积的定义由 =1,求得4λ+4μ﹣2λμ=3 ①;再由 =﹣ ,求得﹣λ﹣μ+λμ=﹣ ②.结合①②求得λ+μ的值.
练习册系列答案
相关题目
【题目】禽流感一直在威胁我们的生活,某疾病控制中心为了研究禽流感病毒繁殖个数(个)随时间(天)变化的规律,收集数据如下:
天数 | 1 | 2 | 3 | 4 | 5 | 6 |
繁殖个数 | 6 | 12 | 25 | 49 | 95 | 190 |
作出散点图可看出样本点分布在一条指数型函数的周围.
保留小数点后两位数的参考数据:
,,,,,,,,其中
(1)求出关于的回归方程(保留小数点后两位数字);
(2)已知,估算第四天的残差.
参考公式: