题目内容
已知等比数列{an}中,a2=32,a8=
,an+1<an.
(1)求数列{an}的通项公式;
(2)设Tn=log2a1+log2a2+…+log2an,求Tn的最大值及相应的n值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041109886338.png)
(1)求数列{an}的通项公式;
(2)设Tn=log2a1+log2a2+…+log2an,求Tn的最大值及相应的n值.
(1)27-n(2)n=6或n=7时,Tn最大,其最大值是T6=T7=21
(1)q6=
,an+1<an,所以q=
.以a1=
=64为首项,所以通项公式为an=64·
n-1=27-n(n∈N?).
(2)设bn=log2an,则bn=log227-n=7-n.所以{bn}是首项为6,公差为-1的等差数列.
Tn=6n+
(-1)=-
n2+
n=-
(n-
)2+
.因为n是自然数,所以n=6或n=7时,Tn最大,其最大值是T6=T7=21.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041109917908.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041109886338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041109949722.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041109964569.png)
(2)设bn=log2an,则bn=log227-n=7-n.所以{bn}是首项为6,公差为-1的等差数列.
Tn=6n+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041109980609.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041109886338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041110027429.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041109886338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041110027429.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824041110073519.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目