题目内容
(13分)已知F1、F2是椭圆c1:
(a>b>0)的左、右焦点,A为右顶点,P为椭圆c1上任意一点,且
最大值的取值范围是[c2,3c2],c2=a2-b2.(1)求椭圆c1离心率e的取值范围;(2)设双曲线c2以椭圆c1焦点为顶点,顶点为焦点,B是双曲线c2在第一象限上任意一点,当椭圆c1离心率e取得最小值时,问是否存在正常数λ使∠BAF1=λ∠BF1A恒成立?若存在,求出λ值;若不存在,请说明理由.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115251414471.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115251538317.gif)
(1)
(2)λ=2
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115251554351.gif)
(1)设P(x,y),则
,
.∴
,将
代入得
,0≤x2≤a2,当x2=a2时得
,又c2≤b2≤3c2,即c2≤a2-c2≤3c2,∴
.∴
.
(2)当
时,a=2c,b=
,∴
,A(2c,0).设B(x0,y0),(x0,y0>0),则
,当AB⊥x轴时,则
,∴
,故
.由此猜想λ=2可使
总成立,证明如下:
当x0≠2c时,
,
,∴
,
将
代入得
.
又∵2∠BF1A与∠BAF1同在区间(0,
)∪(
)内,∴2∠BF1A=∠BAF1.
故存在λ=2,使
恒成立.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115251835493.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115252006485.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115252131509.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115252350474.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115252365630.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115252412635.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115252584472.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115251554351.gif)
(2)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115252646242.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115252662227.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115252693498.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115252708494.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115252833567.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115252989447.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115253020595.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115253036521.gif)
当x0≠2c时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115253176592.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115253192581.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231152532231236.gif)
将
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115253254699.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231152532701400.gif)
又∵2∠BF1A与∠BAF1同在区间(0,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115253301210.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115253317241.gif)
故存在λ=2,使
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823115253036521.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目