题目内容

9.已知x,y∈(-$\sqrt{3}$,$\sqrt{3}$)且xy=-1,则s=$\frac{3}{3-{x}^{2}}$+$\frac{12}{12-{y}^{2}}$的最小值为$\frac{12}{5}$.

分析 先将关于s的表达式整理,再根据xy=1,得到s=1+$\frac{35}{37-1{2x}^{2}-{3y}^{2}}$,由基本不等式的性质求出即可.

解答 解:s=$\frac{3}{3-{x}^{2}}$+$\frac{12}{12-{y}^{2}}$
=$\frac{3(12{-y}^{2})+12(3{-x}^{2})}{(3{-x}^{2})(12{-y}^{2})}$
=$\frac{72-1{2x}^{2}-{3y}^{2}}{36-1{2x}^{2}-{3y}^{2}{{+x}^{2}y}^{2}}$,
∵xy=-1,∴x2y2=1,
∴s=$\frac{72-1{2x}^{2}-{3y}^{2}}{37-1{2x}^{2}-{3y}^{2}}$
=1+$\frac{35}{37-1{2x}^{2}-{3y}^{2}}$,
∵12x2+3y2≥2$\sqrt{3{{6x}^{2}y}^{2}}$=12,
∴s≥1+$\frac{35}{37-12}$=$\frac{12}{5}$,
当且仅当“12x2=3y2”即x=-$\frac{\sqrt{2}}{2}$,y=$\sqrt{2}$或x=$\frac{\sqrt{2}}{2}$,y=-$\sqrt{2}$时“=”成立,
故答案为:$\frac{12}{5}$.

点评 本题考查了函数的最值问题,考查基本不等式的性质,是一道中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网