题目内容

【题目】在直角坐标系中xOy,直线C1的参数方程为 (t是参数).在以坐标原点为极点,x轴非负半轴为极轴的极坐标系中,曲线C2的极坐标方程为ρ=sinθ﹣cosθ(θ是参数).
(Ⅰ)将曲线C2的极坐标方程化为直角坐标方程,并判断曲线C2所表示的曲线;
(Ⅱ)若M为曲线C2上的一个动点,求点M到直线C1的距离的最大值和最小值.

【答案】解:(I)曲线C2的极坐标方程为ρ=sinθ﹣cosθ(θ是参数).可得ρ2=ρ(sinθ﹣cosθ),化为直角坐标方程:x2+y2=y﹣x. 配方为: = .可得曲线C2所表示的曲线为圆:圆心为C2 ,半径r=
(Ⅱ)直线C1的参数方程为 (t是参数),消去参数t化为普通方程:2x﹣y﹣1=0.
圆心C2到直线C1的距离d= =
∴点M到直线C1的距离的最大值为 + ,最小值为
【解析】(I)曲线C2的极坐标方程为ρ=sinθ﹣cosθ(θ是参数).可得ρ2=ρ(sinθ﹣cosθ),利用互化公式可得直角坐标方程:通过配方可得曲线C2所表示的曲线为圆.(Ⅱ)直线C1的参数方程为 (t是参数).消去参数t化为普通方程:2x﹣y﹣1=0.求出圆心C2到直线C1的距离d.可得点M到直线C1的距离的最大值为d+r,最小值为d﹣r.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网