题目内容
【题目】某玩具所需成本费用为P元,且P=1 000+5x+x2,而每套售出的价格为Q元,其中Q(x)=a+ (a,b∈R),
(1)问:玩具厂生产多少套时,使得每套所需成本费用最少?
(2)若生产出的玩具能全部售出,且当产量为150套时利润最大,此时每套价格为30元,求a,b的值.(利润=销售收入-成本).
【答案】(1)该玩具厂生产100套时每套所需成本最少.(2)a=25,b=30.
【解析】
(1)先建立每套所需成本费用函数关系式,再根据基本不等式求最值,(2)先根据利润=销售收入-成本建立利润函数关系式,再根据二次函数性质确定开口方向、对称轴位置以及最大值取法,解方程与不等式组可得a,b的值.
解:(1)每套玩具所需成本费用为=
=x++5≥2+5=25,
当x=,即x=100时等号成立,
故该玩具厂生产100套时每套所需成本最少.
(2)设售出利润为w,则w=x·Q(x)-P
=x-
=x2+(a-5)x-1 000,
由题意得解得a=25,b=30.
练习册系列答案
相关题目