ÌâÄ¿ÄÚÈÝ
2£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬ÀëÐÄÂÊe=$\frac{\sqrt{3}}{2}$£¨1£©Èô¹ýF1µÄÖ±ÏßÓëÍÖÔ²½»ÓÚA¡¢BÁ½µã£¬ÇÒ¡÷ABF2µÄÖܳ¤Îª8£¬ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©ÒÑÖªÖ±Ïßl£ºx=t£¨t£¾0£©ÓëÍÖÔ²C½»ÓÚ²»Í¬µÄÁ½µãM¡¢N£¬ÒÔMNΪֱ¾¶µÄÔ²ÓëÍÖÔ²CµÄ½»µãΪP£¨²»Í¬ÓÚM¡¢N£©£¬Çó¡÷MNPµÄÃæ»ýS£¨t£©µÄ×î´óÖµºÍ´ËʱtµÄÖµ£®
·ÖÎö £¨1£©ÓɹýF1µÄÖ±ÏßÓëÍÖÔ²½»ÓÚA¡¢BÁ½µã£¬¡÷ABF2µÄÖܳ¤Îª8£¬¿ÉµÃ4a=8£¬ÓÖÀëÐÄÂÊe=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$£¬a2=b2+c2£¬ÁªÁ¢½â³ö¼´¿É£®
£¨2£©0£¼t£¼2£®°Ñx=t´úÈëÍÖÔ²·½³Ì¿ÉµÃy2=1-$\frac{{t}^{2}}{4}$£¬¿ÉµÃM$£¨t£¬\frac{\sqrt{4-{t}^{2}}}{2}£©$£¬$N£¨t£¬-\frac{\sqrt{4-{t}^{2}}}{2}£©$£®ÒÔMNΪֱ¾¶µÄÔ²µÄ±ê×¼·½³ÌΪ£º£¨x-t£©2+y2=1-$\frac{{t}^{2}}{4}$£®ÓëÍÖÔ²·½³ÌÁªÁ¢¿ÉµÃ£º3x2-8tx+5t2=0£¬½âµÃxP=$\frac{5t}{3}$¡Ü2£¬$0£¼t¡Ü\frac{6}{5}$£®Òò´Ë¡÷MNPµÄÃæ»ýS£¨t£©=$\frac{1}{2}|MN|•{x}_{P}$=$\frac{1}{3}\sqrt{-£¨{t}^{2}-2£©^{2}+4}$£¬ÀûÓöþ´Îº¯ÊýµÄµ¥µ÷ÐÔ¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨1£©¡ß¹ýF1µÄÖ±ÏßÓëÍÖÔ²½»ÓÚA¡¢BÁ½µã£¬¡÷ABF2µÄÖܳ¤Îª8£¬
¡à4a=8£¬½âµÃa=2£®
¡ßÀëÐÄÂÊe=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$£¬a2=b2+c2£¬
½âµÃc=$\sqrt{3}$£¬b=1£®
¡àÍÖÔ²CµÄ±ê×¼·½³ÌΪ$\frac{{x}^{2}}{4}+{y}^{2}$=1£®
£¨2£©0£¼t£¼2£®
°Ñx=t´úÈëÍÖÔ²·½³Ì¿ÉµÃy2=1-$\frac{{t}^{2}}{4}$£¬¡ày=¡À$\frac{\sqrt{4-{t}^{2}}}{2}$£®M$£¨t£¬\frac{\sqrt{4-{t}^{2}}}{2}£©$£¬$N£¨t£¬-\frac{\sqrt{4-{t}^{2}}}{2}£©$£®
¡àÒÔMNΪֱ¾¶µÄÔ²µÄ±ê×¼·½³ÌΪ£º£¨x-t£©2+y2=1-$\frac{{t}^{2}}{4}$£®
ÁªÁ¢$\left\{\begin{array}{l}{£¨x-t£©^{2}+{y}^{2}=1-\frac{{t}^{2}}{4}}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$£¬
»¯Îª3x2-8tx+5t2=0£¬
½âµÃx=t£¬»òx=$\frac{5t}{3}$£®
¡àxP=$\frac{5t}{3}$£®
¡à$\frac{5t}{3}$¡Ü2£¬½âµÃ$0£¼t¡Ü\frac{6}{5}$£®
¡à¡÷MNPµÄÃæ»ýS£¨t£©=$\frac{1}{2}¡Á2¡Á\frac{\sqrt{4-{t}^{2}}}{2}¡Á£¨\frac{5t}{3}-t£©$=$\frac{1}{3}\sqrt{4-{t}^{2}}•t$=$\frac{1}{3}\sqrt{-£¨{t}^{2}-2£©^{2}+4}$£¬
¡ßh£¨t£©=-£¨t2-2£©2+4ÔÚ$0£¼t¡Ü\frac{6}{5}$ÄÚµ¥µ÷µÝÔö£¬
¡àµ±t=$\frac{6}{5}$ʱ£¬h£¨t£©È¡µÃ×î´óÖµ£¬´ËʱS£¨t£©Ò²È¡µÃ×î´óÖµ$\frac{16}{25}$£®
µãÆÀ ±¾Ì⿼²éÁËÔ²ÓëÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÎÊÌâ¡¢Èý½ÇÐεÄÃæ»ý¼ÆË㹫ʽ¡¢¶þ´Îº¯ÊýµÄµ¥µ÷ÐÔ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮