题目内容

18.在区间〔-1,1〕上随机取一个数x,使sin$\frac{πx}{2}$的值介于0到$\frac{1}{2}$之间的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{6}$C.$\frac{1}{3π}$D.$\frac{1}{6π}$

分析 求出0≤sin$\frac{πx}{2}$≤$\frac{1}{2}$的解集,根据几何概型的概率公式,即可求出对应的概率.

解答 解:当-1<x<1,则-$\frac{π}{2}$<$\frac{πx}{2}$<$\frac{π}{2}$,
由0≤sin$\frac{πx}{2}$≤$\frac{1}{2}$,
∴0≤$\frac{πx}{2}$≤$\frac{1}{6}$π,
即0≤x≤$\frac{1}{3}$,
则sin$\frac{πx}{2}$的值介于0到$\frac{1}{2}$之间的概率P=$\frac{\frac{1}{3}}{1-(-1)}$=$\frac{1}{6}$,
故选:B.

点评 本题主要考查几何概型的概率公式的计算,根据三角函数的性质求出对应的x的取值范围是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网