题目内容
【题目】在直角坐标系内,点A,B的坐标分别为,,P是坐标平面内的动点,且直线,的斜率之积等于,设点P的轨迹为C.
(1)求轨迹C的方程;
(2)设过点且倾斜角不为0的直线与轨迹C相交于M,N两点,求证:直线,的交点在直线上.
【答案】(1);(2)证明见解析.
【解析】
(1)设点,列式,化简(注意斜率存在的条件),求轨迹方程.
(2)直线倾斜角不为0,设直线的方程(不用取讨论斜率是否存在),联立直线和椭圆的方程,消元,韦达定理,用点的坐标表示直线和方程,求交点,进而求出,即证明交点在直线.
(1)设点,,
则,得,即.
故轨迹C的方程为:.
(2)根据题意,可设直线的方程为:,
由,消去x并整理得.
其中,.
设,,则,.
因直线的倾斜角不为0,故,不等于(,不为0),
从而可设直线的方程为:——①,
直线的方程为:——②,
所以,直线,的交点的坐标满足:
.
而
,
因此,,即点Q在直线上.
【题目】网络购物已经成为人们的一种生活方式.某购物平台为了给顾客提供更好的购物体验,为入驻商家设置了积分制度,每笔购物完成后,买家可以根据物流情况、商品质量等因素对商家做出评价,评价分为好评、中评和差评平台规定商家有50天的试营业时间,期间只评价不积分,正式营业后,每个好评给商家计1分,中评计0分,差评计分,某商家在试营业期间随机抽取100单交易调查了其商品的物流情况以及买家的评价情况,分别制成了图1和图2.
(1)通常收件时间不超过四天认为是物流迅速,否则认为是物流迟缓;
请根据题目所给信息完成下面列联表,并判断能否有的把握认为“获得好评”与物流速度有关?
好评 | 中评或差评 | 合计 | |
物流迅速 | |||
物流迟缓 | 30 | ||
合计 |
(2)从正式营业开始,记商家在每笔交易中得到的评价得分为.该商家将试营业50天期间的成交情况制成了频数分布表(表1),以试营业期间成交单数的频率代替正式营业时成交单数发生的概率.
表1
成交单数 | 36 | 30 | 27 |
天数 | 10 | 20 | 20 |
(Ⅰ)求的分布列和数学期望;
(Ⅱ)平台规定,当积分超过10000分时,商家会获得“诚信商家”称号,请估计该商家从正式营业开始,1年内(365天)能否获得“诚信商家”称号
附:
参考数据:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |