题目内容
【题目】在中,,.已知分别是的中点.将沿折起,使到的位置且二面角的大小是60°,连接,如图:
(1)证明:平面平面
(2)求平面与平面所成二面角的大小.
【答案】(1)证明见解析(2)45°
【解析】
(1)设的中点为,连接,设的中点为,连接,,从而即为二面角的平面角,,推导出,从而平面,则,即,进而平面,推导四边形为平行四边形,从而,平面,由此即可得证.
(2)以B为原点,在平面中过B作BE的垂线为x轴,BE为y轴,BA为z轴建立空间直角坐标系,利用向量法求出平面与平面所成二面角的大小.
(1)∵是的中点,∴.
设的中点为,连接.
设的中点为,连接,.
易证:,,
∴即为二面角的平面角.
∴,而为的中点.
易知,∴为等边三角形,∴.①
∵,,,∴平面.
而,∴平面,∴,即.②
由①②,,∴平面.
∵分别为的中点.
∴四边形为平行四边形.
∴,平面,又平面.
∴平面平面.
(2)如图,建立空间直角坐标系,设.
则,,,,
显然平面的法向量,
设平面的法向量为,,,
∴,∴.
,
由图形观察可知,平面与平面所成的二面角的平面角为锐角.
∴平面与平面所成的二面角大小为45°.
练习册系列答案
相关题目