题目内容
3.在二项式(ax+1)7(a∈R)的展开式中,x3的系数为21,则$\underset{lim}{n→∞}$(a3+a6+…+a3n的值是$\frac{3}{2}$.分析 在二项展开式的通项公式中,令x的幂指数等于3,求出r的值,即可求得x3的系数,再根据x3项的系数为21,求得实数a3的值,进而可求极限.
解答 解:由于(ax+1)7展开式的通项公式为Tr+1=${C}_{7}^{r}$•a7-r•x7-r,
令7-r=3,解得r=4,故(ax+1)7展开式中x3的系数为${C}_{7}^{4}$•a3=21,
解得a3=$\frac{3}{5}$,
∴$\underset{lim}{n→∞}$(a3+a6+…+a3n)=$\frac{\frac{3}{5}}{1-\frac{3}{5}}$=$\frac{3}{2}$.
故答案为:$\frac{3}{2}$.
点评 本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.
练习册系列答案
相关题目
15.已知点A(a,a)(a≠0),B(1,0),O为坐标原点.若点C在直线OA上,且BC与OA垂直,则点C的坐标是( )
A. | $(\frac{1}{2},\;-\frac{1}{2})$ | B. | $(\frac{a}{2},\;-\frac{a}{2})$ | C. | $(\frac{a}{2},\;\frac{a}{2})$ | D. | $(\frac{1}{2},\;\frac{1}{2})$ |
16.已知命题p:若a=$\frac{π}{6}$,则sina=$\frac{1}{2}$;命题q:若sina=$\frac{1}{2}$,则a=$\frac{π}{6}$.下面四个结论中正确的是( )
A. | p∧q是真命题 | B. | p∨q是真命题 | C. | ¬p是真命题 | D. | ¬q是假命题 |
13.已知集合A={x|x2-3x+2<0},B={x|log4x>$\frac{1}{2}$},则( )
A. | A⊆B | B. | B⊆A | C. | A∩∁RB=R | D. | A∩B=∅ |
20.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左右焦点分别为F1(-c,0),F2(c,0),若双曲线右支上存在异于顶点的点P满足c•sin∠PF1F2=3a•sin∠PF2F1,则双曲线的离心率的取值范围是( )
A. | $(1,1+\sqrt{7})$ | B. | $(1,2+\sqrt{7})$ | C. | $(3,1+\sqrt{7})$ | D. | (3,2+$\sqrt{7}$) |
15.电流强度I(安)随时间t(秒)变化的函数$I=Asin({ωt+\frac{π}{6}})$(A>0,ω≠0)的图象如图,则当$t=\frac{1}{50}$时电流强度是( )
A. | 5安 | B. | -5安 | C. | $5\sqrt{3}$安 | D. | 10安 |
13.定义在R上的可导函数f(x)满足:f′(x)+f(x)<0,则$\frac{f(m-{m}^{2})}{{e}^{{m}^{2}-m+1}}$与f(1)(e是自然对数的底数)的大小关系是( )
A. | $\frac{f(m-{m}^{2})}{{e}^{{m}^{2}-m+1}}$>f(1) | B. | $\frac{f(m-{m}^{2})}{{e}^{{m}^{2}-m+1}}$<f(1) | ||
C. | $\frac{f(m-{m}^{2})}{{e}^{{m}^{2}-m+1}}$≥f(1) | D. | $\frac{f(m-{m}^{2})}{{e}^{{m}^{2}-m+1}}$≤f(1) |