题目内容
【题目】在平面直角坐标系中,椭圆的离心率为,点在椭圆上.
求椭圆的方程;
已知与为平面内的两个定点,过点的直线与椭圆交于两点,求四边形面积的最大值.
【答案】(1)(2)6
【解析】试题分析:(1)由椭圆定义得到动圆圆心的轨迹的方程;(2)设的方程为,联立可得,通过根与系数的关系表示弦长进而得到四边形面积的表达式,利用换元法及均值不等式求最值即可.
试题解析:
解:由可得,,又因为,所以.
所以椭圆方程为,又因为在椭圆上,所以.
所以,所以,故椭圆方程为.
方法一:设的方程为,联立,
消去得,设点,
有
,
所以令,
有,由
函数,
故函数,在上单调递增,
故,故
当且仅当即时等号成立,
四边形面积的最大值为.
方法二:设的方程为,联立,
消去得,设点,
有
有,
点到直线的距离为,
点到直线的距离为,
从而四边形的面积
令,
有,
函数,
故函数,在上单调递增,
有,故当且仅当即时等号成立,四边形面积的最大值为.
方法三:①当的斜率不存在时,
此时,四边形的面积为.
②当的斜率存在时,设为:,
则
,
,
四边形的面积
,
令 则
,
,
,
综上,四边形面积的最大值为.
练习册系列答案
相关题目
【题目】某音乐院校举行“校园之星”评选活动,评委由本校全体学生组成,对两位选手,随机调查了20个学生的评分,得到下面的茎叶图:
所得分数 | 低于60分 | 60分到79分 | 不低于80分 |
分流方向 | 淘汰出局 | 复赛待选 | 直接晋级 |
(1)通过茎叶图比较两位选手所得分数的平均值及分散程度(不要求计算出具体值,得出结论即可);
(2)举办方将会根据评分结果对选手进行三向分流,根据所得分数,估计两位选手中哪位选手直接晋级的概率更大,并说明理由.