题目内容
【题目】已知函数
(1)当 时,设,讨论的导函数的单调性;
(2)当时,,求的取值范围.
【答案】(1)上单调递减,上单调递增;(2)
【解析】
(1)当时,,对导函数再次求导,转化成解一次不等式,从而得到的单调区间;
(2)由第(1)步的思路,构造函数,对函数进行求导后,再次求导得到,对分成和两种情况进行讨论,先研究的单调性与函数值的正负,再研究的单调性与函数值的正负.
(1)当时,,
,
,当,当,
所以在上单调递减,在上单调递增.
(2)当时,,令,
,
,
当,
①当时,在恒成立,
所以在上单调递增,且,
所以在恒成立,
所以在上单调递增,且,
所以在恒成立,
所以当时,不等式成立.
②当时,
当,当,
所以在上单调递减,且,
所以在上恒成立,
所以在上单调递减,且,
所以在上恒成立,这与相矛盾,
所以不成立.
综上所述:.
【题目】为满足人们的阅读需求,图书馆设立了无人值守的自助阅读区,提倡人们在阅读后将图书分类放回相应区域.现随机抽取了某阅读区500本图书的分类归还情况,数据统计如下(单位:本).
文学类专栏 | 科普类专栏 | 其他类专栏 | |
文学类图书 | 100 | 40 | 10 |
科普类图书 | 30 | 200 | 30 |
其他图书 | 20 | 10 | 60 |
(1)根据统计数据估计文学类图书分类正确的概率;
(2)根据统计数据估计图书分类错误的概率.
【题目】某种规格的矩形瓷砖根据长期检测结果,各厂生产的每片瓷砖质量都服从正态分布,并把质量在之外的瓷砖作为废品直接回炉处理,剩下的称为正品.
(Ⅰ)从甲陶瓷厂生产的该规格瓷砖中抽取10片进行检查,求至少有1片是废品的概率;
(Ⅱ)若规定该规格的每片正品瓷砖的“尺寸误差”计算方式为:设矩形瓷砖的长与宽分别为、,则“尺寸误差”为,按行业生产标准,其中“优等”、“一级”、“合格”瓷砖的“尺寸误差”范围分别是,、,、,(正品瓷砖中没有“尺寸误差”大于的瓷砖),每片价格分别为7.5元、6.5元、5.0元.现分别从甲、乙两厂生产的该规格的正品瓷砖中随机抽取100片瓷砖,相应的“尺寸误差”组成的样本数据如下:
尺寸误差 | 0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 |
频数 | 10 | 30 | 30 | 5 | 10 | 5 | 10 |
(甲厂瓷砖的“尺寸误差”频数表)用这个样本的频率分布估计总体分布,将频率视为概率.
(ⅰ)记甲厂该种规格的2片正品瓷砖卖出的钱数为(元,求的分布列及数学期望.
(ⅱ)由如图可知,乙厂生产的该规格的正品瓷砖只有“优等”、“一级”两种,求5片该规格的正品瓷砖卖出的钱数不少于36元的概率.
附:若随机变量服从正态分布,则;,,.