题目内容
【题目】在直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求直线的普通方程与曲线的直角坐标方程;
(2)若直线与曲线交于,两点,且设定点,求的值.
【答案】(1)的普通方程为;曲线的直角坐标方程为:.(2)
【解析】
(1)由直线的参数方程,消去参数,即可求得直线的普通方程,由极坐标与直角坐标的互化公式,即可取得曲线的直角坐标方程;
(2)由题意,求得直线的参数方程,代入椭圆的方程,利用参数的几何意义,即可求解。
(1)由消去得,
由得,即,
故直线的普通方程为;曲线的直角坐标方程为:.
(2)因为直线过,所以可设直线的参数方程为
并代入椭圆的方程,整理得:,
设,对应的参数为,,则,,且
【题目】为了调查某社区居民每天参加健身的时间,某机构在该社区随机采访男性、女性各50名,其中每人每天的健身时间不少于1小时称为“健身族”,否则称其为"非健身族”,调查结果如下:
健身族 | 非健身族 | 合计 | |
男性 | 40 | 10 | 50 |
女性 | 30 | 20 | 50 |
合计 | 70 | 30 | 100 |
(1)若居民每人每天的平均健身时间不低于70分钟,则称该社区为“健身社区”. 已知被随机采访的男性健身族,男性非健身族,女性健身族,女性非健身族每人每天的平均健分时间分別是1.2小时,0.8小时,1.5小时,0.7小时,试估计该社区可否称为“健身社区”?
(2)根据以上数据,能否在犯错误的概率不超过5%的情况下认为“健身族”与“性别”有关?
参考公式: ,其中.
参考数据:
0. 50 | 0. 40 | 0. 25 | 0. 05 | 0. 025 | 0. 010 | |
0. 455 | 0. 708 | 1. 321 | 3. 840 | 5. 024 | 6. 635 |
【题目】某中学一位高三班主任对本班50名学生学习积极性和对待班级工作的态度进行调查,得到的统计数据如表所示:
积极参加班级工作 | 不积极参加班级工作 | 合计 | |
学习积极性高 | 18 | 7 | 25 |
学习积极性不高 | 6 | 19 | 25 |
合计 | 24 | 26 | 50 |
(1)如果随机调查这个班的一名学生,那么抽到不积极参加班级工作且学习积极性不高的学生的概率是多少?
(2)若不积极参加班级工作且学习积极性高的7名学生中有两名男生,现从中抽取2名学生参加某项活动,问2名学生中有1名男生的概率是多少?
(3)学生的学习积极性与对待班级工作的态度是否有关系?请说明理由.
附: