题目内容

【题目】已知圆M:x2+(y﹣4)2=4,点P是直线l:x﹣2y=0上的一动点,过点P作圆M的切线PA,PB,切点为A,B.
(1)当切线PA的长度为 时,求点P的坐标;
(2)若△PAM的外接圆为圆N,试问:当P在直线l上运动时,圆N是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由.
(3)求线段AB长度的最小值.

【答案】
(1)解:由题意知,圆M的半径r=2,M(0,4),设P(2b,b),

∵PA是圆M的一条切线,∴∠MAP=90°,

,解得

∴P(0,0)或


(2)解:设P(2b,b),∵∠MAP=90°,∴经过A,P,M三点的圆N以MP为直径,

其方程为

即(2x+y﹣4)b﹣(x2+y2﹣4y)=0,

,解得

∴圆过定点(0,4),


(3)解:因为圆N方程为

即x2+y2﹣2bx﹣(b+4)y+4b=0,

圆M:x2+(y﹣4)2=4,即x2+y2﹣8y+12=0,

②﹣①得:圆M方程与圆N相交弦AB所在直线方程为:2bx+(b﹣4)y+12﹣4b=0,

点M到直线AB的距离

相交弦长即:

时,AB有最小值


【解析】(1)根据圆M的标准方程即可求出半径r=2和圆心M坐标(0,4),并可设P(2b,b),从而由条件便可求出|MP|= ,这样便可求出b的值,即得出点P的坐标;(2)容易求出圆N的圆心坐标(b, ),及半径,从而可得出圆N的标准方程,化简后可得到(2x+y﹣4)b﹣(x2+y2﹣4y)=0,从而可建立关于x,y的方程,解出x,y,便可得出圆N所过的定点坐标;(3)可写出圆N和圆M的一般方程,联立这两个一般方程即可求出相交弦AB的直线方程,进而求出圆心M到直线AB的距离,从而求出弦长 ,显然可看出b= 时,AB取最小值,并求出该最小值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网