题目内容

【题目】如图是一几何体的平面展开图,其中为正方形,分别为的中点,在此几何体中,给出下面四个结论:①直线与直线异面;②直线与直线异面;③直线平面;④平面平面;其中正确的是_____.

【答案】②③

【解析】

对①,根据三角形的中位线定理可得四边形是平面四边形,直线与直线共面;对②,由异面直线的定义即可得出;对③,由线面平行的判定定理即可得出;对④,可举出反例

由展开图恢复原几何体如图所示:

对①,在中,由,根据三角形的中位线定理可得

,因此四边形是梯形,故直线与直线不是异面直线,故①不正确;

对②,由点不在平面内,直线不经过点,根据异面直线的定义可知:直线与直线异面,故②正确;

对③,由①可知:平面平面直线平面,故③正确;

对④,如图:假设平面平面.过点分别交于点,在上取一点,连接,又.若时,必然平面与平面不垂直.故④不一定成立.

综上可知:只有②③正确.

故答案为:②③

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网