题目内容

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,已知 ,sinA= . (Ⅰ)求sinC的值;
(II)设D为AC的中点,若△ABC的面积为8 ,求BD的长.

【答案】解:在△ABC中,∵ , ∴cbcosA=cacosB,
即bcosA=acosB,
sinBcosA=sinAcosB,
sin(A﹣B)=0,
∴A=B,
∵sinA=
∴sinC=sin(π﹣2A)=sin(2A)=2sinAcosA=2× × =
(Ⅱ)设AC=BC=m,
∵△ABC的面积为8
× =
m=3 ,cosC=
根据余弦定理得出:
BD2=
BD=
【解析】(Ⅰ)利用向量的数量积和正玄定理得出sinBcosA=sinAcosB,根据三角公式得出A=B,根据诱导公式求解即可.(Ⅱ)利用面积公式,以及余弦定理求解即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网