题目内容
【题目】为了加强环保建设,提高社会效益和经济效益,某市计划用若干年时间更换一万辆燃油型公交车。每更换一辆新车,则淘汰一辆旧车,更换的新车为电力型车和混合动力型车。今年初投入了电力型公交车辆,混合动力型公交车辆,计划以后电力型车每年的投入量比上一年增加,混合动力型车每年比上一年多投入辆.设、分别为第年投入的电力型公交车、混合动力型公交车的数量,设、分别为年里投入的电力型公交车、混合动力型公交车的总数量。
(1)求、,并求年里投入的所有新公交车的总数;
(2)该市计划用年的时间完成全部更换,求的最小值.
【答案】(1),,;
(2)147.
【解析】
试题(1)设、分别为第年投入的电力型公交车、混合动力型公交车的数量,通过分析可知数列是首项为、公比为的等比数列,数列是首项为、公差为的等差数列,由等比数列的前项和公式,等差数列的前项和公式即可求出;(2)通过分析、是关于的单调递增函数,故是关于的单调递增函数,要求满足的最小值应该是,此时应注意实际问题中取整的问题.
试题解析:(1)设、分别为第年投入的电力型公交车、混合动力型公交车的数量,
依题意知,数列是首项为、公比为的等比数列; 1分
数列是首项为、公差为的等差数列, 2分
所以数列的前项和, 4分
数列的前项和, 6分
所以经过年,该市更换的公交车总数
; 7分
(2)因为、是关于的单调递增函数, 9分
因此是关于的单调递增函数, 10分
所以满足的最小值应该是, 11分
即,解得, 12分
又,所以的最小值为147.
练习册系列答案
相关题目