题目内容
已知a>0且a≠1,设命题p:函数y=+1在R上单调递减,命题q:曲线y=+(2a-3)x+1与x轴交于不同的两点,如果“p∨q”为真,且“p∧q”为假,求a的取值范围.
解析
已知命题若非是的充分不必要条件,求的取值范围.
(本小题满分14分)已知,设:函数在R上单调递减;:函数的图象与x轴至少有一个交点.如果P与Q有且只有一个正确,求的取值范围.
(12分)已知命题p:不等式的解集为R,命题q:是R上的增函数,若p或q为真命题,p且q为假命题,求实数m的取值范围.
已知函数(Ⅰ)求函数的最小值;(Ⅱ)已知,命题p:关于x的不等式对任意恒成立;命题q:函数是增函数.若“p或q”为真,“p且q”为假,求实数m的取值范围
已知命题,满足,命题,方程都表示焦点在轴上的椭圆.若命题为真命题,为假命题,求实数的取值范围
(本小题满分12分)已知P={x|x2-8x-20≤0},S={x|1-m≤x≤1+m}(1)是否存在实数m,使x∈P是x∈S的充要条件,若存在,求出m的取值范围;(2)是否存在实数m,使x∈P是x∈S的必要条件,若存在,求出m的取值范围.
(10分)命题:关于的不等式,对一切恒成立,命题:函数是增函数,若为真,为假,求实数的取值范围.
(满分12分)设命题P:关于x的不等式的解集为;命题Q:的定义域为R.如果P或Q为真,P且Q为假,求的取值范围.