题目内容
【题目】在数列{an}中,a1=2,an+1=4an-3n+1,n∈N*.
(1)求证:数列{an-n}是等比数列;
(2)求数列{an}的前n项和Sn;
(3)求证:不等式Sn+1≤4Sn对任意n∈N*皆成立.
【答案】(1)见解析(2)(3)见解析
【解析】(1)证明:由题设an+1=4an-3n+1,得an+1-(n+1)=4(an-n),n∈N*.又a1-1=1,所以数列{an-n}是首项为1,公比为4的等比数列.
(2)解:由(1)可知an-n=4n-1,于是数列{an}的通项公式为an=4n-1+n,所以数列{an}的前n项和Sn=.
(3)证明:对任意的n∈N*,Sn+1-4Sn==- (3n2+n-4)≤0,所以不等式Sn+1≤4Sn对任意n∈N*皆成立.
练习册系列答案
相关题目
【题目】某地区甲校高二年级有1 100人,乙校高二年级有900人,为了统计两个学校高二年级在学业水平考试中的数学学科成绩,采用分层抽样的方法在两校共抽取了200名学生的数学成绩,如下表:(已知本次测试合格线是50分,两校合格率均为100%)
甲校高二年级数学成绩:
分组 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
频数 | 10 | 25 | 35 | 30 | x |
乙校高二年级数学成绩:
分组 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
频数 | 15 | 30 | 25 | y | 5 |
(1)计算x,y的值,并分别估计以上两所学校数学成绩的平均分(精确到1分).
(2)若数学成绩不低于80分为优秀,低于80分的为非优秀,根据以上统计数据写下面2×2列联表,并回答能否在犯错误的概率不超过0.05的前提下认为“两个学校的数学成绩有差异?”
甲校 | 乙校 | 总计 | |
优秀 | |||
非优秀 | |||
总计 |