题目内容

【题目】如图,在四棱锥中,平面,底面是菱形,

(1)求证:平面平面

(2),求与平面所成角的正弦值.

【答案】1)见解析;(2

【解析】

试题证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中的一条垂直于这个平面,则另一条也垂直于这个平面.解题时,注意线线、线面与面面关系的相互转化. 过空间任意一点引两条直线分别平行于两条异面直线,它们所成的锐角(或直角)就是异面直线所成的角。 (注:当所成角为90°时,两直线垂直。)求两条异面直线所成角的大小一般方法是通过平行移动直线,把异面问题转化为共面问题来解决。 异面直线所成角的步骤一般是平移其中一条或两条使其相交。连接端点,使角在一个三角形中。计算三条边长,用余弦定理计算余弦值。若余弦值为负,则取其相反数。

试题解析:证明:∵ABCD是菱形

∵PA平面ABCDBD平面ABCD∴PABD

PAAC=APA平面PACAC平面PAC

∴BD平面PAC

2)延长DAE,使AE=DA,连接BEPE,则AEBC

四边形AEBC为平行四边形

∴BE//AC

∴BEBP所成的角就是两异面直线所成的角即

中, PA=2,AE=2,PAAE,∴PE=,BE=AC=,PB=

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网