题目内容
【题目】如图,在四棱锥中,平面,底面是菱形,,.
(1)求证:平面平面;
(2)若,求与平面所成角的正弦值.
【答案】(1)见解析;(2)
【解析】
试题证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中的一条垂直于这个平面,则另一条也垂直于这个平面.解题时,注意线线、线面与面面关系的相互转化. 过空间任意一点引两条直线分别平行于两条异面直线,它们所成的锐角(或直角)就是异面直线所成的角。 (注:当所成角为90°时,两直线垂直。)求两条异面直线所成角的大小一般方法是通过平行移动直线,把异面问题转化为共面问题来解决。 异面直线所成角的步骤一般是①平移其中一条或两条使其相交。②连接端点,使角在一个三角形中。③计算三条边长,用余弦定理计算余弦值。④若余弦值为负,则取其相反数。
试题解析:证明:∵ABCD是菱形∴
∵PA平面ABCD,BD平面ABCD,∴PABD
PAAC=A,PA平面PAC,AC平面PAC
∴BD平面PAC
(2)延长DA到E,使AE=DA,连接BE,PE,则AEBC
∴四边形AEBC为平行四边形
∴BE//AC,
∴BE与BP所成的角就是两异面直线所成的角即
在中, PA=2,AE=2,PAAE,∴PE=,BE=AC=,PB=
∴
练习册系列答案
相关题目
【题目】某高校调查喜欢“统计”课程是否与性别有关,随机抽取了55个学生,得到统计数据如表:
喜欢 | 不喜欢 | 总计 | |
男生 | 20 | ||
女生 | 20 | ||
总计 | 30 | 55 |
(1)完成表格的数据;
(2)判断是否在犯错误的概率不超过0.005的前提下认为喜欢“统计”课程与性别有关?
参考公式:
0.025 | 0.01 | 0.005 | 0.001 | |
5.024 | 6.635 | 7.879 | 10.828 |