题目内容

9.函数f(x)=ax-x2(a>1)有三个不同的零点,则实数a的取值范围是1<a<${e}^{\frac{2}{e}}$.

分析 x<0时,必有一个交点,x>0时,由ax-x2=0,可得lna=$\frac{2lnx}{x}$,构造函数,确定函数的单调性,求出1<a<${e}^{\frac{2}{e}}$时有两个交点,即可得出结论.

解答 解:x>0时,由ax-x2=0,可得ax=x2,∴xlna=2lnx,
∴lna=$\frac{2lnx}{x}$,
令h(x)=$\frac{2lnx}{x}$,则h′(x)=$\frac{2-2lnx}{{x}^{2}}$=0,可得x=e,
∴函数在(0,e)上单调增,在(e,+∞)上单调减,
∴h(x)max=h(e)=$\frac{2}{e}$,
∴lna<$\frac{2}{e}$,
∴1<a<${e}^{\frac{2}{e}}$时有两个交点;
又x<0时,必有一个交点,
∴1<a<${e}^{\frac{2}{e}}$时,函数f(x)=ax-x2(a>1)有三个不同的零点,
故答案为:1<a<${e}^{\frac{2}{e}}$.

点评 本题考查函数的零点,考查函数的单调性,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网