题目内容
已知函数
,
,
(1)若
为奇函数,求
的值;
(2)若
=1,试证
在区间
上是减函数;
(3)若
=1,试求
在区间
上的最小值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020154910791.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020154988429.png)
(1)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020155003447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020155035283.png)
(2)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020155035283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020155003447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020155081417.png)
(3)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020155035283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020155003447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020155144533.png)
(1)![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020155159337.png)
(2)利用“定义法”证明。
在区间
上是减函数
(3) 若
,由(2)知
在区间
上是减函数,在区间
上,当
时,
有最小值,且最小值为2。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020155159337.png)
(2)利用“定义法”证明。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020155003447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020155081417.png)
(3) 若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020155159337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020155003447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020155081417.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020155144533.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020155331323.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020155362331.png)
试题分析:(1)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020155362400.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020155378410.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020155003447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020155425634.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020155440756.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020155159337.png)
(2)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020155159337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020155003447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020155518406.png)
设为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020155549579.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020155549670.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020155565664.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020155581847.png)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020155549579.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020155627798.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020155549670.png)
所以,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020155674676.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020155003447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020155081417.png)
(3) 若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020155159337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020155003447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020155081417.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020155003447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020155783497.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020155815507.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020155549670.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020155565664.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020155581847.png)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020155815507.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020155908820.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020155924741.png)
所以 ,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020155955638.png)
因此
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020155003447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020155783497.png)
因此,在区间
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020155144533.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020155331323.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020155362331.png)
点评:中档题,研究函数的奇偶性,要注意定义域关于原点对称。利用定义法研究函数的单调性,要注意遵循“设,作差,变形,定号,结论”等步骤,关键是变形与定号。函数的单调性的基本应用之一是求函数的最值。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目