题目内容
【题目】已知函数,.
(1)求的单调区间;
(2)设曲线与轴正半轴的交点为,曲线在点处的切线方程为,求证:对于任意的实数,都有;
(3)若方程为实数)有两个实数根,,且,求证:.
【答案】(1)单调递增区间为,单调递减区间为;(2)证明见解析;(3)证明见解析.
【解析】
(1)求出原函数的导函数,求和的解,即可求出函数的单调性;
(2)设出点的坐标,利用导数求出切线方程,构造函数,利用导数得到对于任意实数,有,即对任意实数,都有;
(3)由(2)知,,求出方程的根,由在上单调递减,得到.同理得到,则可证得结果..
(1)解:由,可得.
当时,,函数单调递增;
当时,,函数单调递减.
的单调递增区间为,单调递减区间为.
(2)证明:设点的坐标为,,则,,
曲线在点处的切线方程为,即,
令函数,即,
则,在R上单调递减.
,当时,;当,时,,
在上单调递增,在,上单调递减,
对于任意实数,,即对任意实数,都有;
(3)证明:由(2)知,,设方程的根为,可得.
在上单调递减,又由(2)知,
因此.
类似地,设曲线在原点处的切线方程为,可得,
对于任意的,有,即.
设方程的根为,可得,
在上单调递增,且,
因此,
由此可得.
【题目】2020年寒假是特殊的寒假,因为疫情全体学生只能在家进行网上在线学习,为了研究学生在网上学习的情况,某学校在网上随机抽取120名学生对于线上教育进行调查,其中男生与女生的人数之比为,其中男生30人对于线上教育满意,女生中有15名表示对线上教育不满意.
(1)完成列联表,并回答能否有99%的把握认为对“线上教育是否满意与性别有关”;
满意 | 不满意 | 总计 | |
男生 | |||
女生 | |||
合计 | 120 |
(2)从被调查中对线上教育满意的学生中,利用分层抽样抽取8名学生,再在8名学生中抽取2名学生,作线上学习的经验介绍,求其中抽取一名男生与一名女生的概率.
参考公式:附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.842 | 5.024 | 6.635 | 7.879 | 10.828 |
【题目】过椭圆的左顶点作斜率为2的直线,与椭圆的另一个交点为,与轴的交点为,已知.
(1)求椭圆的离心率;
(2)设动直线与椭圆有且只有一个公共点,且与直线相交于点,若轴上存在一定点,使得,求椭圆的方程.
【题目】稠环芳香烃化合物中有不少是致癌物质,比如学生钟爱的快餐油炸食品中会产生苯并芘,它是由一个苯环和一个芘分子结合而成的稠环芳香烃类化合物,长期食用会致癌.下面是一组稠环芳香烃的结构简式和分子式:
名称 | 萘 | 蒽 | 并四苯 | … | 并n苯 |
结构简式 | … | … | |||
分子式 | … | … |
由此推断并十苯的分子式为________.