题目内容
【题目】在平面直角坐标系中,曲线的方程为,以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为,点,点是曲线上的动点,为线段的中点.
(1)写出曲线的参数方程,并求出点的轨迹的直角坐标方程;
(2)已知点,直线与曲线的交点为,若线段的中点为,求线段长度.
【答案】(1)(为参数);;(2).
【解析】
(1)根据圆的直角坐标方程写出曲线的参数方程,求出点的坐标,利用消参法求出点的轨迹的直角坐标方程;
(2)将的参数方程为参数)代入曲线的直角坐标方程得,再利用直线参数方程的几何意义求解.
(1)的参数方程为为参数).
设,所以,即的参数方程为为参数),化简为直角坐标方程为.
所以点的轨迹的直角坐标方程为.
(2)直线的直角坐标方程为,易知直线过点,
设的参数方程为参数),将其代入曲线的直角坐标方程得,
设对应的参数分别为,
所以,
所以.
【题目】2020年寒假是特殊的寒假,因为疫情全体学生只能在家进行网上在线学习,为了研究学生在网上学习的情况,某学校在网上随机抽取120名学生对线上教育进行调查,其中男生与女生的人数之比为11∶13,其中男生30人对于线上教育满意,女生中有15名表示对线上教育不满意.
(1)完成列联表,并回答能否有99%的把握认为对“线上教育是否满意与性别有关”;
满意 | 不满意 | 总计 | |
男生 | |||
女生 | |||
合计 | 120 |
(2)从被调查中对线上教育满意的学生中,利用分层抽样抽取8名学生,再在8名学生中抽取3名学生,作线上学习的经验介绍,其中抽取男生的个数为,求出的分布列及期望值.
参考公式:附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 0.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10828 |
【题目】已知某种新型病毒的传染能力很强,给人们生产和生活带来很大的影响,所以创新研发疫苗成了当务之急.为此,某药企加大了研发投入,市场上这种新型冠状病毒的疫苗的研发费用(百万元)和销量(万盒)的统计数据如下:
研发费用(百万元) | 2 | 3 | 6 | 10 | 13 | 14 |
销量(万盒) | 1 | 1 | 2 | 2.5 | 4 | 4.5 |
(1)根据上表中的数据,建立关于的线性回归方程(用分数表示);
(2)根据所求的回归方程,估计当研发费用为1600万元时,销售量为多少?
参考公式:,.