题目内容
【题目】求满足下列条件的曲线方程:
(1)经过两条直线2x+y﹣8=0和x﹣2y+1=0的交点,且垂直于直线6x﹣8y+3=0的直线
(2)经过点C(﹣1,1)和D(1,3),圆心在x轴上的圆.
【答案】
(1)解:由 ,解得x=3,y=2,
∴点P的坐标是(3,2),
∵所求直线l与8x+6y+C=0垂直,
∴可设直线l的方程为8x+6y+C=0.
把点P的坐标代入得8×3+6×2+C=0,即C=﹣36.
∴所求直线l的方程为8x+6y﹣36=0,
即4x+3y﹣18=0.
(2)解:∵圆C的圆心在x轴上,设圆心为M(a,0),由圆过点A(﹣1,1)和B(1,3),
由|MA|=|MB|可得 MA2=MB2,即(a+1)2+1=(a﹣1)2+9,求得a=2,
可得圆心为M( 2,0),半径为|MA|= ,故圆的方程为 (x﹣2)2+y2=10.
【解析】(1)联立方程,求出点P的坐标,利用所求直线l与6x﹣8y+3=0垂直,可设直线l的方程为8x+6y+C=0,代入P的坐标,可求直线l的方程;(2)设圆心为M(a,0),由|MA|=|MB|求得a的值,可得圆心坐标以及半径的值,从而求得圆的方程.
【考点精析】关于本题考查的圆的一般方程,需要了解圆的一般方程的特点:(1)①x2和y2的系数相同,不等于0.②没有xy这样的二次项;(2)圆的一般方程中有三个特定的系数D、E、F,因之只要求出这三个系数,圆的方程就确定了;(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显才能得出正确答案.
【题目】某校为了解高三年级不同性别的学生对取消艺术课的态度(支持或反对),进行了如下的调查研究.全年级共有1350人,男女生比例为8:7,现按分层抽样方法抽取若干名学生,每人被抽到的概率均为 ,通过对被抽取学生的问卷调查,得到如下2x2列联表:
支持 | 反对 | 总计 | |
男生 | 30 | ||
女生 | 25 | ||
总计 |
(Ⅰ)完成列联表,并判断能否有99.9%的把握认为态度与性别有关?
(Ⅱ)若某班有6名男生被抽到,其中2人支持,4人反对;有4名女生被抽到,其中2人支持,2人反对,现从这10人中随机抽取一男一女进一步调查原因.求其中恰有一人支持一人反对的概率.
参考公式及临界表:K2=
P(K2≥k0) | 0.10 | 0.050 | 0.010 | 0.005 | 0.001 |
k0 | 2.706% | 3.841 | 6.635 | 7.879 | 10.828 |