题目内容

【题目】设f(x)是定义在R上以2为周期的偶函数,已知x∈(0,1)时,f(x)= (1﹣x),则函数f(x)在(1,2)上(
A.是减函数,且f(x)>0
B.是增函数,且f(x)>0
C.是增函数,且f(x)<0
D.是减函数,且f(x)<0

【答案】A
【解析】解:设 x∈(﹣1,0),则﹣x∈(0,1),故 f(﹣x)= (1+x). 又f(x)是定义在R上以2为周期的偶函数,故 f(x)= (1+x).
再令 1<x<2,则﹣1<x﹣2<0,∴f(x﹣2)= [1+(x﹣2)],
∴f(x)= [x﹣1],
由1<x<2 可得 0<x﹣1<1,
故函数f(x)在(1,2)上是减函数,且f(x)>0,
故选A.
【考点精析】认真审题,首先需要了解奇偶性与单调性的综合(奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网