题目内容
【题目】已知,是两条不同直线,,是两个不同平面,给出下列四个命题:
①若,垂直于同一平面,则与平行;
②若,平行于同一平面,则与平行;
③若,不平行,则在内不存在与平行的直线;
④若,不平行,则与不可能垂直于同一平面
其中真命题的个数为( )
A.4B.3C.2D.1
【答案】D
【解析】
①若垂直于同一平面,则与可能相交;②若,平行于同一平面,则两直线位置不能确定;③若相交,则在内存在无数条与平行的直线;④用反证法证明结论成立.即可得出结论.
①若直线垂直平面,根据面面垂直的判断定理,
所有过直线的平面都与平面垂直,取其中的两个平面为,
此时相交,故①不正确;
②若,平行于同一平面,则两直线可能平行、相交、异面;
故②不正确;
③若不平行,则相交,则在内存在无数条直线与两平面的交线平行,
根据线面平面的判定定理,这无数条平行线与平面平行,故③不正确;
④假设同垂直平面,则有,与已知不平行矛盾,
故假设不成立,即不同垂直平面,故④正确.
故选:D.
【题目】某市为创建全国文明城市,推出“行人闯红灯系统建设项目”,将针对闯红灯行为进行曝光.交警部门根据某十字路口以往的监测数据,从穿越该路口的行人中随机抽查了人,得到如图示的列联表:
闯红灯 | 不闯红灯 | 合计 | |
年龄不超过岁 | |||
年龄超过岁 | |||
合计 |
(1)能否有的把握认为闯红灯行为与年龄有关?
(2)下图是某路口监控设备抓拍的个月内市民闯红灯人数的统计图.请建立与的回归方程,并估计该路口月份闯红灯人数.
附:
,
参考数据:,
【题目】某知名电商在双十一购物狂欢节中成交额再创新高,月日单日成交额达亿元.某店主在此次购物狂欢节期间开展了促销活动,为了解买家对此次促销活动的满意情况,随机抽取了参与活动的位买家,调查了他们的年龄层次和购物满意情况,得到年龄层次的频率分布直方图和“购物评价为满意”的年龄层次频数分布表.年龄层次的频率分布直方图:
“购物评价为满意”的年龄层次频数分布表:
年龄(岁) | |||||
频数 |
(1)估计参与此次活动的买家的平均年龄(同一组中的数据用该组区间的中点值做代表);
(2)若年龄在岁以下的称为“青年买家”,年龄在岁以上(含岁)的称为“中年买家”,完成下面的列联表,并判断能否有的把握认为中、青年买家对此次活动的评价有差异?
评价满意 | 评价不满意 | 合计 | |
中年买家 | |||
青年买家 | |||
合计 |
附:参考公式:.