题目内容
4.在△ABC中,b2cosC+bccosB=a2,则△ABC的形状是( )A. | 直角三角形 | B. | 锐角三角形 | C. | 等腰直角三角形 | D. | 等腰三角形 |
分析 由条件利用正弦定理、诱导公式求得 sinB=sinA,可得 a=b,从而得出结论.
解答 解:在△ABC中,∵b2cosC+bccosB=a2,由正弦定理可得 sin2BcosC+sinBsinCcosB=sin2A,
sinB•sin(B+C)=sin2A,∴sinB=sinA,∴a=b,
故△ABC的形状是等腰三角形,
故选:D.
点评 本题主要考查正弦定理、诱导公式,属于基础题.
练习册系列答案
相关题目
11.函数f(x)=x+2cosx在区间[0,π]上的最大值为( )
A. | 2 | B. | π-2 | C. | $\sqrt{3}+\frac{5π}{6}$ | D. | $\sqrt{3}+\frac{π}{6}$ |
15.半径不等的两定圆O1、O2无公共点,动圆O与圆O1、O2都内切,则圆心O轨迹是( )
A. | 双曲线的一支 | B. | 椭圆或圆 | ||
C. | 双曲线的一支或椭圆或圆 | D. | 双曲线一支或椭圆 |
19.若点P(-1,2)在角θ的终边上,则cosθ等于( )
A. | -2 | B. | $-\frac{{\sqrt{5}}}{5}$ | C. | $-\frac{1}{2}$ | D. | $\frac{2\sqrt{5}}{5}$ |
16.已知曲线y=2x2上一点A(1,2),则A处的切线斜率为( )
A. | 16 | B. | 8 | C. | 4 | D. | 2 |
14.在平面几何里有射影定理:设三角形ABC的两边AB⊥AC,D是A点在BC上的射影,则AB2=BD•BC.拓展到空间,在四面体A-BCD中,CA⊥面ABD,点O是A在面BCD内的射影,且O在面BCD内,类比平面三角形射影定理,得出正确的结论是( )
A. | S△ABC2=S△BOC•S△BDC | B. | S△ABD2=S△BOD•S△BDC | ||
C. | S△ADC2=S△DOC•S△BDC | D. | S△DBC2=S△ABD•S△ABC |