题目内容
19.若点P(-1,2)在角θ的终边上,则cosθ等于( )A. | -2 | B. | $-\frac{{\sqrt{5}}}{5}$ | C. | $-\frac{1}{2}$ | D. | $\frac{2\sqrt{5}}{5}$ |
分析 首先求出P到原点的距离,然后利用三角函数的坐标法定义得到答案.
解答 解:因为点P(-1,2)在角θ的终边上,OP=$\sqrt{(-1)^{2}+{2}^{2}}=\sqrt{5}$,
所以cosθ=$\frac{-1}{\sqrt{5}}=-\frac{\sqrt{5}}{5}$;
故选B.
点评 本题考查了三角函数的坐标法定义;关键是明确利用角的终边上的点表示三角函数的方法.
练习册系列答案
相关题目
10.下列式子中成立的是( )
A. | log0.44<log0.46 | B. | 1.013.4>1.013.5 | C. | 3.50.3>3.40.3 | D. | log56<log67 |
4.在△ABC中,b2cosC+bccosB=a2,则△ABC的形状是( )
A. | 直角三角形 | B. | 锐角三角形 | C. | 等腰直角三角形 | D. | 等腰三角形 |
9.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:
(1)在给定的坐标系中画出表中数据的散点图;
(2)求出y关于x的线性回归方程y=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(3)试预测加工10个零件需要多少小时?(注:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)
零件的个数x(个) | 2 | 3 | 4 | 5 |
加工的时间y(小时) | 2.5 | 3 | 4 | 4.5 |
(2)求出y关于x的线性回归方程y=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(3)试预测加工10个零件需要多少小时?(注:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)