题目内容
圆:x²+y²-4x+6y=0和圆:x²+y²-6x=0交于A,B两点,则AB的垂直平分线的方程是 ( )
A.x+y+3=0 | B.2x-y-5="0" | C.3x-y-9=0 | D.4x-3y+7=0 |
C
试题分析:解:圆:x2+y2-4x+6y="0" 的圆心坐标为(2,-3),圆:x2+y2-6x=0的圆心坐标为(3,0),由题意可得AB的垂直平分线的方程就是两圆的圆心所在的直线的方程,由两点式求得AB的垂直平分线的方程是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012141820779.png)
点评:本题主要考查用两点式求直线方程的方法,判断AB的垂直平分线的方程就是两圆的圆心所在的直线的方程,是解题的关键,属于基础题
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目