题目内容
【题目】祖暅是南北朝时代的伟大科学家,公元五世纪末提出体积计算原理,即祖暅原理:“幂势既同,则积不容异”.意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任何一个平面所截,如果截面面积恒相等,那么这两个几何体的体积一定相等.设A,B为两个同高的几何体,A,B的体积不相等,
A,B在等高处的截面积不恒相等.根据祖暅原理可知,p是q的( )
A. 充分不必要条件 B. 必要不充分条件
C. 充要条件 D. 既不充分也不必要条件
【答案】A
【解析】分析:利用祖暅原理分析判断即可.
详解:设A,B为两个同高的几何体,
A,B的体积不相等,
A,B在等高处的截面积不恒相等.
如果截面面积恒相等,那么这两个几何体的体积一定相等,
根据祖暅原理可知,p是q的充分不必要条件.
故选:A.
【题目】2018年至2020年,第六届全国文明城市创建工作即将开始.在2017年9月7日召开的攀枝花市创文工作推进会上,攀枝花市委明确提出“力保新一轮提名城市资格、确保2020年创建成功”的目标.为了确保创文工作,今年初市交警大队在辖区开展“机动车不礼让行人整治行动” .下表是我市一主干路口监控设备抓拍的5个月内 “驾驶员不礼让斑马线”行为统计数据:
月份 | |||||
违章驾驶员人数 |
(Ⅰ)请利用所给数据求违章人数与月份
之间的回归直线方程
;
(Ⅱ)预测该路口7月份不“礼让斑马线”违章驾驶员的人数;
(Ⅲ)交警从这5个月内通过该路口的驾驶员中随机抽查了50人,调查“驾驶员不礼让斑马线”行为与驾龄的关系,得到如下列联表:
不礼让斑马线 | 礼让斑马线 | 合计 | |
驾龄不超过 | |||
驾龄 | |||
合计 |
能否据此判断有97.5%的把握认为“礼让斑马线”行为与驾龄有关?