题目内容
【题目】设等差数列{an}的前n项和为Sn,已知:a5=2a2+3且a2,,a14成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设正项数列{bn}满足bn2Sn+1=Sn+1+2,求证:b1+b2+…+bn<n+1.
【答案】(Ⅰ)an=2n﹣1;(Ⅱ)详见解析.
【解析】
(Ⅰ)设等差数列{an}的公差为d,运用等差数列的通项公式和求和公式,以及等比数列的中项性质,注意,解方程可得首项和公差,即可得到所求通项公式;
(Ⅱ)求得,求得,并推得,再由数列的分组求和以及裂项相消求和,结合不等式的性质即可得证.
(Ⅰ)设等差数列的公差为d,由可得,
又,,成等比数列,可得,
即,且,
解得,,
则;
(Ⅱ)证明:由(Ⅰ)可得,
由,可得,
由
,
故.
得证.
练习册系列答案
相关题目