题目内容

10.(1)若f(x)+f($\frac{x-1}{x}$)=1+x,求f(x);
(2)若2f(x)+f(1-x)=1+x,求f(x).

分析 (1)利用换元法以及方程组求解函数的解析式.
(2)用1-x代替式中的x可得方程,和已知式子联立解方程组可得.

解答 解:(1)f(x)+f($\frac{x-1}{x}$)=1+x,可得f(x)+f(1-$\frac{1}{x}$)=1+x…①,
用1-$\frac{1}{x}$换x可得:f(1-$\frac{1}{x}$)+f($\frac{1-\frac{1}{x}-1}{1-\frac{1}{x}}$)=-$\frac{1}{x}$,即f(1-$\frac{1}{x}$)+f($\frac{1}{1-x}$)=-$\frac{1}{x}$,…②,
利用$\frac{1}{1-x}$换f(x)+f(1-$\frac{1}{x}$)=1+x 中的x可得:f($\frac{1}{1-x}$)+f($1-\frac{1}{\frac{1}{1-x}}$)=1+$\frac{1}{1-x}$,即f($\frac{1}{1-x}$)+f(x)=1+$\frac{1}{1-x}$…③,
①-②+③可得:2f(x)=1+x+$\frac{1}{x}$+1+$\frac{1}{1-x}$,
解得f(x)=1+$\frac{x}{2}$$+\frac{1}{2x}$+$\frac{1}{2-2x}$.
(2)∵2f(x)+f(1-x)=1+x,
∴用1-x代替式中的x可得2f(1-x)+f(x)=2-x,
两式联立消去f(1-x)可得3f(x)=3x,
所求函数的解析式为:f(x)=x.

点评 本题考查函数解析式的求解方法,涉及方程组的思想,属基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网