题目内容
(本小题满分10分)选修4-1:几何证明讲 如图,AB是⊙O的直径,弦BD、CA的延长线相交于点E,EF垂直BA的延长线于点F.
求证:(1);
(2)AB2=BE•BD-AE•AC.
求证:(1);
(2)AB2=BE•BD-AE•AC.
(1)连结AD所以∠ADB=90°又EF⊥AB,∠EFA=90°则A、D、E、F四点共圆,∴∠DEA=∠DFA(2)由(1)知,BD•BE=BA•BF,又△ABC∽△AEF∴即:AB•AF=AE•AC
∴ BE•BD-AE•AC=BA•BF-AB•AF=AB(BF-AF)=AB2
∴ BE•BD-AE•AC=BA•BF-AB•AF=AB(BF-AF)=AB2
试题分析:(1) 连结AD
因为AB为圆的直径,所以∠ADB=90°,又EF⊥AB,∠EFA=90°
则A、D、E、F四点共圆
∴∠DEA=∠DFA
(2) 由(1)知,BD•BE=BA•BF
又△ABC∽△AEF
∴
即:AB•AF=AE•AC
∴ BE•BD-AE•AC
=BA•BF-AB•AF
=AB(BF-AF)
=AB2
点评:与圆相关的证明角相等问题结合圆中的性质,圆中相等的角构成的相似三角形边的长度比例关系
练习册系列答案
相关题目