题目内容

7.已知数列{an}满足a1=1,(n+1)an+1=nan,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{{2}^{n}}{{a}_{n}}$,数列{bn}的前n项和为Tn,求Tn

分析 (Ⅰ)由已知得$\frac{{a}_{n+1}}{{a}_{n}}=\frac{n}{n+1}$,由此利用累乘法能求出数列{an}的通项公式.
(Ⅱ)由bn=$\frac{{2}^{n}}{{a}_{n}}$=n•2n,利用错位相减法能求出数列{bn}的前n项和.

解答 解:(Ⅰ)∵数列{an}满足a1=1,(n+1)an+1=nan,n∈N*
∴$\frac{{a}_{n+1}}{{a}_{n}}=\frac{n}{n+1}$,
∴${a}_{n}={a}_{1}×\frac{{a}_{2}}{{a}_{1}}×\frac{{a}_{3}}{{a}_{2}}×…×\frac{{a}_{n}}{{a}_{n-1}}$
=1×$\frac{1}{2}×\frac{2}{3}×…×\frac{n-1}{n}$
=$\frac{1}{n}$,
∴数列{an}的通项公式${a}_{n}=\frac{1}{n}$.
(Ⅱ)∵bn=$\frac{{2}^{n}}{{a}_{n}}$=n•2n
∴数列{bn}的前n项和:
Tn=1×2+2×22+3×23+…+n×2n,①
2Tn=1×22+2×23+3×24+…+n×2n+1,②
①-②,得-Tn=2+22+23+…+2n-n×2n+1
=$\frac{2(1-{2}^{n})}{1-2}-n×{2}^{n+1}$
=(1-n)×2n+1-2,
∴${T}_{n}=(n-1)×{2}^{n+1}+2$.

点评 本题考查数列的通项公式和数列的前n项和的求法,是中档题,解题时要认真审题,注意累乘法和错位相减法的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网