题目内容

【题目】已知函数f(x)=ex﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…为自然对数的底数.
(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;
(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.

【答案】
(1)解:∵f(x)=ex﹣ax2﹣bx﹣1,∴g(x)=f′(x)=ex﹣2ax﹣b,

又g′(x)=ex﹣2a,x∈[0,1],∴1≤ex≤e,

∴①当 时,则2a≤1,g′(x)=ex﹣2a≥0,

∴函数g(x)在区间[0,1]上单调递增,g(x)min=g(0)=1﹣b;

②当 ,则1<2a<e,

∴当0<x<ln(2a)时,g′(x)=ex﹣2a<0,当ln(2a)<x<1时,g′(x)=ex﹣2a>0,

∴函数g(x)在区间[0,ln(2a)]上单调递减,在区间[ln(2a),1]上单调递增,

g(x)min=g[ln(2a)]=2a﹣2aln(2a)﹣b;

③当 时,则2a≥e,g′(x)=ex﹣2a≤0,

∴函数g(x)在区间[0,1]上单调递减,g(x)min=g(1)=e﹣2a﹣b,

综上:函数g(x)在区间[0,1]上的最小值为


(2)解:由f(1)=0,e﹣a﹣b﹣1=0b=e﹣a﹣1,又f(0)=0,

若函数f(x)在区间(0,1)内有零点,则函数f(x)在区间(0,1)内至少有三个单调区间,

由(1)知当a≤ 或a≥ 时,函数g(x)在区间[0,1]上单调,不可能满足“函数f(x)在区间(0,1)内至少有三个单调区间”这一要求.

,则gmin(x)=2a﹣2aln(2a)﹣b=3a﹣2aln(2a)﹣e+1

令h(x)= (1<x<e)

= ,∴ .由 >0x<

∴h(x)在区间(1, )上单调递增,在区间( ,e)上单调递减,

= = <0,即gmin(x)<0 恒成立,

∴函数f(x)在区间(0,1)内至少有三个单调区间

,所以e﹣2<a<1,

综上得:e﹣2<a<1.


【解析】(1)求出f(x)的导数得g(x),再求出g(x)的导数,对它进行讨论,从而判断g(x)的单调性,求出g(x)的最小值;(2)利用等价转换,若函数f(x)在区间(0,1)内有零点,则函数f(x)在区间(0,1)内至少有三个单调区间,所以g(x)在(0,1)上应有两个不同的零点.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网