题目内容

【题目】在平面直角坐标系xOy中,对于直线l:ax+by+c=0和点P1(x1 , y1),P2(x2 , y2),记η=(ax1+by1+c)(ax2+by2+c),若η<0,则称点P1 , P2被直线l分隔,若曲线C与直线l没有公共点,且曲线C上存在点P1、P2被直线l分隔,则称直线l为曲线C的一条分隔线.
(1)求证:点A(1,2),B(﹣1,0)被直线x+y﹣1=0分隔;
(2)若直线y=kx是曲线x2﹣4y2=1的分隔线,求实数k的取值范围;
(3)动点M到点Q(0,2)的距离与到y轴的距离之积为1,设点M的轨迹为曲线E,求证:通过原点的直线中,有且仅有一条直线是E的分隔线.

【答案】
(1)证明:把点(1,2)、(﹣1,0)分别代入x+y﹣1 可得(1+2﹣1)(﹣1﹣1)=﹣4<0,

∴点(1,2)、(﹣1,0)被直线 x+y﹣1=0分隔


(2)解:联立直线y=kx与曲线x2﹣4y2=1可得 (1﹣4k2)x2=1,根据题意,此方程无解,故有 1﹣4k2≤0,

∴k≤﹣ ,或 k≥

曲线上有两个点(﹣1,0)和(1,0)被直线y=kx分隔


(3)证明:设点M(x,y),则 |x|=1,故曲线E的方程为[x2+(y﹣2)2]x2=1 ①.

y轴为x=0,显然与方程①联立无解.

又P1(1,2)、P2(﹣1,2)为E上的两个点,且代入x=0,有 η=1×(﹣1)=﹣1<0,

故x=0是一条分隔线.

若过原点的直线不是y轴,设为y=kx,代入[x2+(y﹣2)2]x2=1,可得[x2+(kx﹣2)2]x2=1,

令f(x)=[x2+(kx﹣2)2]x2﹣1,

∵k≠2,f(0)f(1)=﹣(k﹣2)2<0,∴f(x)=0没有实数解,

k=2,f(x)=[x2+(2x﹣2)2]x2﹣1=0没有实数解,

即y=kx与E有公共点,

∴y=kx不是E的分隔线.

∴通过原点的直线中,有且仅有一条直线是E的分隔线.


【解析】(1)把A、B两点的坐标代入η=(ax1+by1+c)(ax2+by2+c),再根据η<0,得出结论.(2)联立直线y=kx与曲线x2﹣4y2=1可得 (1﹣4k2)x2=1,根据此方程无解,可得1﹣4k2≤0,从而求得k的范围.(3)设点M(x,y),与条件求得曲线E的方程为[x2+(y﹣2)2]x2=1 ①.由于y轴为x=0,显然与方程①联立无解.把P1、P2的坐标代入x=0,由η=1×(﹣1)=﹣1<0,可得x=0是一条分隔线.
【考点精析】本题主要考查了一般式方程的相关知识点,需要掌握直线的一般式方程:关于的二元一次方程(A,B不同时为0)才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网